Выбор языка
МЕНЮ
РЕКЛАМА
РЕКЛАМА
|
Книги,самоучители → A Programmer's Introduction to Mathematics Second EditionДобавил GFX_Muawia | 22-02-2025, 00:47 | Мнений: 0 | Заглянули 18
![]() A Programmer's Introduction to Mathematics Second Edition PDF | 398 Pages | 23 MB A Programmer's Introduction to Mathematics uses your familiarity with ideas from programming and software to teach mathematics. You'll learn about the central objects and theorems of mathematics, covering graphs, calculus, linear algebra, eigenvalues, optimization, and more. You'll also be immersed in the often unspoken cultural attitudes of mathematics, learning both how to read and write proofs while understanding why mathematics is the way it is. Between each technical chapter is an essay describing a different aspect of mathematical culture, and discussions of the insights and meta-insights that constitute mathematical intuition. As you learn, we'll use new mathematical ideas to create wondrous programs, from cryptographic schemes to neural networks to hyperbolic tessellations. Each chapter also contains a set of exercises that have you actively explore mathematical topics on your own. By the end of the book, you will be able to learn mathematics on your own. In short, this book will teach you to engage with mathematics. This is the ebook edition, a full-color pdf containing the complete contents of the book (the physical book is black and white). Due to the heavy use of mathematical typesetting, there is no plan for a ebook-reader-specific format (mobi, epub). This ebook is a simple pdf download. Contents: Our Goal i Chapter 1. Like Programming, Mathematics has a Culture 1 Chapter 2. Polynomials 5 2.1 Polynomials, Java, and Definitions . . . . . . . . . . . . . . . . . . . . . . 5 2.2 A Little More Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Existence & Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 Realizing it in Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.5 Application: Sharing Secrets . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.6 Cultural Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.8 Chapter Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Chapter 3. On Pace and Patience 35 Chapter 4. Sets 39 4.1 Sets, Functions, and Their -Jections . . . . . . . . . . . . . . . . . . . . . 40 4.2 Clever Bijections and Counting . . . . . . . . . . . . . . . . . . . . . . . 48 4.3 Proof by Induction and Contradiction . . . . . . . . . . . . . . . . . . . . 51 4.4 Application: Stable Marriages . . . . . . . . . . . . . . . . . . . . . . . . 54 4.5 Cultural Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.7 Chapter Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Chapter 5. Variable Names, Overloading, and Your Brain 63 Chapter 6. Graphs 69 6.1 The Definition of a Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.2 Graph Coloring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.3 Register Allocation and Hardness . . . . . . . . . . . . . . . . . . . . . . 73 6.4 Planarity and the Euler Characteristic . . . . . . . . . . . . . . . . . . . . 75 6.5 Application: the Five Color Theorem . . . . . . . . . . . . . . . . . . . . 78Sold to 6.6 Approximate Coloring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.7 Cultural Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.9 Chapter Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Chapter 7. The Many Subcultures of Mathematics 89 Chapter 8. Calculus with One Variable 95 8.1 Lines and Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 8.2 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 8.3 The Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 8.4 Taylor Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 8.5 Remainders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 8.6 Application: Finding Roots . . . . . . . . . . . . . . . . . . . . . . . . . . 119 8.7 Cultural Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 8.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Chapter 9. On Types and Tail Calls 129 Chapter 10. Linear Algebra 135 10.1 Linear Maps and Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . 136 10.2 Linear Maps, Formally This Time . . . . . . . . . . . . . . . . . . . . . . 141 10.3 The Basis and Linear Combinations . . . . . . . . . . . . . . . . . . . . . 143 10.4 Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 10.5 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 10.6 Conjugations and Computations . . . . . . . . . . . . . . . . . . . . . . . 155 10.7 One Vector Space to Rule Them All . . . . . . . . . . . . . . . . . . . . . 158 10.8 Geometry of Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 159 10.9 Application: Singular Value Decomposition . . . . . . . . . . . . . . . . . 164 10.10 Cultural Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 10.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 10.12 Chapter Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 Chapter 11. Live and Learn Linear Algebra (Again) 185 Chapter 12. Eigenvectors and Eigenvalues 191 12.1 Eigenvalues of Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 12.2 Limiting the Scope: Symmetric Matrices . . . . . . . . . . . . . . . . . . 195 12.3 Inner Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 12.4 Orthonormal Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 12.5 Computing Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 12.6 The Spectral Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 12.7 Application: Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 12.8 Cultural Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225Sold to 12.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 12.10 Chapter Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 Chapter 13. Rigor and Formality 233 Chapter 14. Multivariable Calculus and Optimization 239 14.1 Generalizing the Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . 239 14.2 Linear Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 14.3 Vector-valued Functions and the Chain Rule . . . . . . . . . . . . . . . . 246 14.4 Computing the Total Derivative . . . . . . . . . . . . . . . . . . . . . . . 248 14.5 The Geometry of the Gradient . . . . . . . . . . . . . . . . . . . . . . . . 251 14.6 Optimizing Multivariable Functions . . . . . . . . . . . . . . . . . . . . . 253 14.7 Gradient Descent: an Optimization Hammer . . . . . . . . . . . . . . . . 261 14.8 Gradients of Computation Graphs . . . . . . . . . . . . . . . . . . . . . . 262 14.9 Application: Automatic Differentiation and a Simple Neural Network . . 265 14.10 Cultural Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 14.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 14.12 Chapter Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 Chapter 15. The Argument for Big-O Notation 291 Chapter 16. Groups 301 16.1 The Geometric Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . 303 16.2 The Interface Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 16.3 Homomorphisms: Structure Preserving Functions . . . . . . . . . . . . . 309 16.4 Building Blocks of Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 312 16.5 Geometry as the Study of Groups . . . . . . . . . . . . . . . . . . . . . . 314 16.6 The Symmetry Group of the Poincaré Disk . . . . . . . . . . . . . . . . . 324 16.7 Application: Drawing Hyperbolic Tessellations . . . . . . . . . . . . . . . 329 16.8 Cultural Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 16.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 16.10 Chapter Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 Chapter 17. A New Interface 353 Appendix A. Notation 363 Appendix B. A Summary of Proofs 365 B.1 Propositional and first-order logic . . . . . . . . . . . . . . . . . . . . . . 365 B.2 Methods of proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 B.3 How does one actually prove things? . . . . . . . . . . . . . . . . . . . . 368 Appendix C. Annotated Resources 373 C.1 Fundamentals and Foundations . . . . . . . . . . . . . . . . . . . . . . . 373Sold to C.2 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374 C.3 Graph Theory and Combinatorics . . . . . . . . . . . . . . . . . . . . . . 375 C.4 Calculus and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375 C.5 Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376 C.6 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 C.7 Abstract Algebra (Groups, etc.) . . . . . . . . . . . . . . . . . . . . . . . . 377 C.8 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 C.9 Computer Science, Theory, and Algorithms . . . . . . . . . . . . . . . . . 378 C.10 Fun and Recreation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380 About the Author and Cover 381 Index 383 Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь..
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем. Другие новости по теме:
Информация Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации. |
Реклама
|